کۆمەڵەی بەکۆتایی: جیاوازیی نێوان پێداچوونەوەکان

چاکسازیی نووسە عەرەبییەکان
No edit summary
(چاکسازیی نووسە عەرەبییەکان)
تاگ: بەکارھێنانی نووسەی ناستاندارد
لە [[بیرکاری]]دا، '''کۆمەڵی بەکۆتایی''' یان '''کۆمەڵی دواھاتوو''' (بە ئینگلیزی: ''finite set'') [[کۆمەڵ (بیرکاری)|کۆمەڵ]]ێکە کە ژمارەیەکی بەکۆتایی [[ئەندام (بیرکاری)|ئەندام]]ی ھەیە. بۆ نموونە:
{{Ltr}}
:<math>\{2,4,6,8,10\}\,\!</math>
{{Ltr/end}}
 
٥ ئەندامی ھەیە. بە کۆمەڵێک کە بەکۆتایی نەبێت، دەوترێت کۆمەڵی دوانەهاتوو یان [[کۆمەڵی بێکۆتایی]].
بۆ نموونە کۆمەڵەی [[ژمارەی تەواو|ژمارە تەواوەکان]]، کۆمەڵێکی بێکۆتایییە:
{{Ltr}}
:<math>\{\ldots\ ,-3,-2,-1,0,1,2,3,\ldots\}.</math>
{{Ltr/end}}
== سەرچاوەکان ==
* Patrick Suppes, Axiomatic Set Theory, D. Van Nostrand Company, Inc., 1960
 
{{ماتماتیک-کۆلکە}}
 
{{دەروازە|ماتماتیک}}